tuner_fc0012.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. /*
  2. * fc0012 tuner support for rtl-sdr
  3. *
  4. * Based on tuner_fc0012.c found as part of the (seemingly GPLed)
  5. * rtl2832u Linux DVB driver.
  6. *
  7. * Rewritten and hacked into rtl-sdr by David Basden <davidb-sdr@rcpt.to>
  8. */
  9. #include <stdio.h>
  10. #include <stdint.h>
  11. #include "rtlsdr_i2c.h"
  12. #include "tuner_fc0012.h"
  13. #define CRYSTAL_FREQ 28800000
  14. #define FC0012_LNAGAIN FC0012_LNA_GAIN_HI
  15. /* Incomplete list of register settings:
  16. *
  17. * Name Reg Bits Desc
  18. * CHIP_ID 0x00 0-7 Chip ID (constant 0xA1)
  19. * RF_A 0x01 0-3 Number of count-to-9 cycles in RF
  20. * divider (suggested: 2..9)
  21. * RF_M 0x02 0-7 Total number of cycles (to-8 and to-9)
  22. * in RF divider
  23. * RF_K_HIGH 0x03 0-6 Bits 8..14 of fractional divider
  24. * RF_K_LOW 0x04 0-7 Bits 0..7 of fractional RF divider
  25. * RF_OUTDIV_A 0x05 3-7 Power of two required?
  26. * LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
  27. * RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the
  28. * RF output divider
  29. * VCO_SPEED 0x06 3 Select tuning range of VCO:
  30. * 0 = Low range, (ca. 1.1 - 1.5GHz)
  31. * 1 = High range (ca. 1.4 - 1.8GHz)
  32. * BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40
  33. * 8MHz=0x00
  34. * XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input
  35. * or 0 for 36MHz
  36. * <agc params> 0x08 0-7
  37. * EN_CAL_RSSI 0x09 4 Enable calibrate RSSI
  38. * (Receive Signal Strength Indicator)
  39. * LNA_FORCE 0x0d 0
  40. * AGC_FORCE 0x0d ?
  41. * LNA_GAIN 0x13 3-4 Low noise amp gain
  42. * LNA_COMPS 0x15 3 ?
  43. * VCO_CALIB 0x0e 7 Set high then low to calibrate VCO
  44. * (fast lock?)
  45. * VCO_VOLTAGE 0x0e 0-6 Read Control voltage of VCO
  46. * (big value -> low freq)
  47. */
  48. /* glue functions to rtl-sdr code */
  49. int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte)
  50. {
  51. uint8_t data[2];
  52. data[0] = RegAddr;
  53. data[1] = Byte;
  54. if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, data, 2) < 0)
  55. return FC0012_ERROR;
  56. return FC0012_OK;
  57. }
  58. int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte)
  59. {
  60. uint8_t data = RegAddr;
  61. if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
  62. return FC0012_ERROR;
  63. if (rtlsdr_i2c_read_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
  64. return FC0012_ERROR;
  65. *pByte = data;
  66. return FC0012_OK;
  67. }
  68. #ifdef DEBUG
  69. #define DEBUGF printf
  70. #else
  71. #define DEBUGF(...) ()
  72. #endif
  73. #if 0
  74. void FC0012_Dump_Registers()
  75. {
  76. #ifdef DEBUG
  77. unsigned char regBuf;
  78. int ret;
  79. int i;
  80. DEBUGF("\nFC0012 registers:\n");
  81. for (i=0; i<=0x15; ++i)
  82. {
  83. ret = FC0012_Read(pTuner, i, &regBuf);
  84. if (ret) DEBUGF("\nCouldn't read register %02x\n", i);
  85. DEBUGF("R%x=%02x ",i,regBuf);
  86. }
  87. DEBUGF("\n");
  88. FC0012_Read(pTuner, 0x06, &regBuf);
  89. DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down");
  90. DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed");
  91. DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz");
  92. FC0012_Read(pTuner, 0x07, &regBuf);
  93. DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ<!>");
  94. FC0012_Read(pTuner, 0x09, &regBuf);
  95. DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS<!>" : "Disabled");
  96. FC0012_Read(pTuner, 0x0d, &regBuf);
  97. DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced");
  98. FC0012_Read(pTuner, 0x13, &regBuf);
  99. DEBUGF("LNA Gain:\t");
  100. switch (regBuf & 0x18) {
  101. case (0x00): DEBUGF("Low\n"); break;
  102. case (0x08): DEBUGF("Middle\n"); break;
  103. case (0x10): DEBUGF("High\n"); break;
  104. default: DEBUGF("unknown gain value 0x18\n");
  105. }
  106. #endif
  107. }
  108. #endif
  109. int FC0012_Open(void *pTuner)
  110. {
  111. // DEBUGF("FC0012_Open start");
  112. if (FC0012_Write(pTuner, 0x01, 0x05)) return -1;
  113. if (FC0012_Write(pTuner, 0x02, 0x10)) return -1;
  114. if (FC0012_Write(pTuner, 0x03, 0x00)) return -1;
  115. if (FC0012_Write(pTuner, 0x04, 0x00)) return -1;
  116. if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1;
  117. if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow
  118. if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal
  119. if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8
  120. if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough
  121. if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer
  122. if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency
  123. //if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1;
  124. if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode
  125. if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing
  126. if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
  127. if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1;
  128. if (FC0012_Write(pTuner, 0x10, 0x00)) return -1;
  129. if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
  130. if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain
  131. if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1;
  132. if (FC0012_Write(pTuner, 0x14, 0x00)) return -1;
  133. if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS
  134. /* Black magic from nim_rtl2832_fc0012.c in DVB driver.
  135. Even though we've set 0x11 to 0x00 above, this needs to happen to have
  136. it go back
  137. */
  138. if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1;
  139. if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
  140. if (FC0012_Write(pTuner, 0x15, 0x04)) return -1;
  141. // DEBUGF("FC0012_Open SUCCESS");
  142. return FC0012_OK;
  143. }
  144. # if 0
  145. // Frequency is in kHz. Bandwidth is in MHz
  146. // This is pseudocode to set GPIO6 for VHF/UHF filter switching.
  147. // Trying to do this in reality leads to fail currently. I'm probably doing it wrong.
  148. void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth)
  149. {
  150. if( Frequency < 260000 && Frequency > 150000 )
  151. {
  152. // set GPIO6 = low
  153. // 1. Set tuner frequency
  154. // 2. if the program quality is not good enough, switch to frequency + 500kHz
  155. // 3. if the program quality is still no good, switch to frequency - 500kHz
  156. }
  157. else
  158. {
  159. // set GPIO6 = high
  160. // set tuner frequency
  161. }
  162. }
  163. #endif
  164. int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth)
  165. {
  166. int VCO_band = 0;
  167. unsigned long doubleVCO;
  168. unsigned short xin, xdiv;
  169. unsigned char reg[21], am, pm, multi;
  170. unsigned char read_byte;
  171. unsigned long CrystalFreqKhz;
  172. // DEBUGF("FC0012_SetFrequency start");
  173. CrystalFreqKhz = (rtlsdr_get_tuner_clock(pTuner) + 500) / 1000;
  174. //===================================== Select frequency divider and the frequency of VCO
  175. if (Frequency * 96 < 3560000)
  176. {
  177. multi = 96; reg[5] = 0x82; reg[6] = 0x00;
  178. }
  179. else if (Frequency * 64 < 3560000)
  180. {
  181. multi = 64; reg[5] = 0x82; reg[6] = 0x02;
  182. }
  183. else if (Frequency * 48 < 3560000)
  184. {
  185. multi = 48; reg[5] = 0x42; reg[6] = 0x00;
  186. }
  187. else if (Frequency * 32 < 3560000)
  188. {
  189. multi = 32; reg[5] = 0x42; reg[6] = 0x02;
  190. }
  191. else if (Frequency * 24 < 3560000)
  192. {
  193. multi = 24; reg[5] = 0x22; reg[6] = 0x00;
  194. }
  195. else if (Frequency * 16 < 3560000)
  196. {
  197. multi = 16; reg[5] = 0x22; reg[6] = 0x02;
  198. }
  199. else if (Frequency * 12 < 3560000)
  200. {
  201. multi = 12; reg[5] = 0x12; reg[6] = 0x00;
  202. }
  203. else if (Frequency * 8 < 3560000)
  204. {
  205. multi = 8; reg[5] = 0x12; reg[6] = 0x02;
  206. }
  207. else if (Frequency * 6 < 3560000)
  208. {
  209. multi = 6; reg[5] = 0x0A; reg[6] = 0x00;
  210. }
  211. else
  212. {
  213. multi = 4; reg[5] = 0x0A; reg[6] = 0x02;
  214. }
  215. doubleVCO = Frequency * multi;
  216. reg[6] = reg[6] | 0x08;
  217. VCO_band = 1;
  218. xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2));
  219. if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) )
  220. xdiv = xdiv + 1;
  221. pm = (unsigned char)( xdiv / 8 );
  222. am = (unsigned char)( xdiv - (8 * pm));
  223. if (am < 2) {
  224. reg[1] = am + 8;
  225. reg[2] = pm - 1;
  226. } else {
  227. reg[1] = am;
  228. reg[2] = pm;
  229. }
  230. // From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV).
  231. xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2));
  232. xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2));
  233. if( xin >= (unsigned short) 16384 )
  234. xin = xin + (unsigned short) 32768;
  235. reg[3] = (unsigned char)(xin >> 8);
  236. reg[4] = (unsigned char)(xin & 0x00FF);
  237. // DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
  238. switch(Bandwidth)
  239. {
  240. case 6: reg[6] = 0x80 | reg[6]; break;
  241. case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break;
  242. case 8: default: reg[6] = ~0xC0 & reg[6]; break;
  243. }
  244. if (FC0012_Write(pTuner, 0x01, reg[1])) return -1;
  245. if (FC0012_Write(pTuner, 0x02, reg[2])) return -1;
  246. if (FC0012_Write(pTuner, 0x03, reg[3])) return -1;
  247. if (FC0012_Write(pTuner, 0x04, reg[4])) return -1;
  248. //reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there?
  249. if (FC0012_Write(pTuner, 0x05, reg[5])) return -1;
  250. if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
  251. // VCO Calibration
  252. if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
  253. if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
  254. // Read resulting VCO control voltage
  255. if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
  256. if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1;
  257. reg[14] = 0x3F & read_byte;
  258. // Adjust VCO range if control voltage is at the limit
  259. if (VCO_band)
  260. {
  261. // high-band VCO hitting low frequency bound
  262. if (reg[14] > 0x3C)
  263. {
  264. // select low-band VCO
  265. reg[6] = ~0x08 & reg[6];
  266. if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
  267. if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
  268. if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
  269. }
  270. }
  271. else
  272. {
  273. // low-band VCO hitting high frequency bound
  274. if (reg[14] < 0x02) {
  275. // select high-band VCO
  276. reg[6] = 0x08 | reg[6];
  277. if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
  278. if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
  279. if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
  280. }
  281. }
  282. // DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers();
  283. return FC0012_OK;
  284. }