123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- import sys
- import numpy as np
- import matplotlib.mlab as mlab
- import matplotlib.pyplot as plt
- from scipy.ndimage.filters import maximum_filter
- from scipy.ndimage.morphology import (generate_binary_structure,
- iterate_structure, binary_erosion)
- import hashlib
- from operator import itemgetter
- PY3 = sys.version_info >= (3, 0)
- IDX_FREQ_I = 0
- IDX_TIME_J = 1
- ######################################################################
- # Sampling rate, related to the Nyquist conditions, which affects
- # the range frequencies we can detect.
- DEFAULT_FS = int(44100 / 2)
- ######################################################################
- # Size of the FFT window, affects frequency granularity
- DEFAULT_WINDOW_SIZE = 4096
- ######################################################################
- # Ratio by which each sequential window overlaps the last and the
- # next window. Higher overlap will allow a higher granularity of offset
- # matching, but potentially more fingerprints.
- DEFAULT_OVERLAP_RATIO = 0.4 #0.75 better accuracy much slower, default 0.5
- ######################################################################
- # Degree to which a fingerprint can be paired with its neighbors --
- # higher will cause more fingerprints, but potentially better accuracy.
- DEFAULT_FAN_VALUE = 15 #30 twice as many fingerprints, not much accuracy
- ######################################################################
- # Minimum amplitude in spectrogram in order to be considered a peak.
- # This can be raised to reduce number of fingerprints, but can negatively
- # affect accuracy.
- DEFAULT_AMP_MIN = 10 #/2 useless
- ######################################################################
- # Number of cells around an amplitude peak in the spectrogram in order
- # for Dejavu to consider it a spectral peak. Higher values mean less
- # fingerprints and faster matching, but can potentially affect accuracy.
- PEAK_NEIGHBORHOOD_SIZE = 10 #10 to augment fingerprints 3x and improve accuracy, default 20
- ######################################################################
- # Thresholds on how close or far fingerprints can be in time in order
- # to be paired as a fingerprint. If your max is too low, higher values of
- # DEFAULT_FAN_VALUE may not perform as expected.
- MIN_HASH_TIME_DELTA = 0
- MAX_HASH_TIME_DELTA = 200
- ######################################################################
- # If True, will sort peaks temporally for fingerprinting;
- # not sorting will cut down number of fingerprints, but potentially
- # affect performance.
- PEAK_SORT = True
- ######################################################################
- # Number of bits to throw away from the front of the SHA1 hash in the
- # fingerprint calculation. The more you throw away, the less storage, but
- # potentially higher collisions and misclassifications when identifying songs.
- FINGERPRINT_REDUCTION = 20 #1 for much less storage, leave at 20, don't change
- def fingerprint(channel_samples, Fs=DEFAULT_FS,
- wsize=DEFAULT_WINDOW_SIZE,
- wratio=DEFAULT_OVERLAP_RATIO,
- fan_value=DEFAULT_FAN_VALUE,
- amp_min=DEFAULT_AMP_MIN):
- """
- FFT the channel, log transform output, find local maxima, then return
- locally sensitive hashes.
- """
- # FFT the signal and extract frequency components
- arr2D = mlab.specgram(
- channel_samples,
- NFFT=wsize,
- Fs=Fs,
- window=mlab.window_hanning,
- noverlap=int(wsize * wratio))[0]
- # apply log transform since specgram() returns linear array
- arr2D = 10 * np.log10(arr2D)
- arr2D[arr2D == -np.inf] = 0 # replace infs with zeros
- # find local maxima
- local_maxima = get_2D_peaks(arr2D, plot=False, amp_min=amp_min)
- # return hashes
- return generate_hashes(local_maxima, fan_value=fan_value)
- def get_2D_peaks(arr2D, plot=False, amp_min=DEFAULT_AMP_MIN):
- # http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphology.iterate_structure.html#scipy.ndimage.morphology.iterate_structure
- struct = generate_binary_structure(2, 1)
- neighborhood = iterate_structure(struct, PEAK_NEIGHBORHOOD_SIZE)
- # find local maxima using our fliter shape
- local_max = maximum_filter(arr2D, footprint=neighborhood) == arr2D
- background = (arr2D == 0)
- eroded_background = binary_erosion(background, structure=neighborhood,
- border_value=1)
- # Boolean mask of arr2D with True at peaks
- detected_peaks = local_max ^ eroded_background
- # extract peaks
- amps = arr2D[detected_peaks]
- j, i = np.where(detected_peaks)
- # filter peaks
- amps = amps.flatten()
- peaks = zip(i, j, amps)
- peaks_filtered = [x for x in peaks if x[2] > amp_min] # freq, time, amp
- # get indices for frequency and time
- frequency_idx = [x[1] for x in peaks_filtered]
- time_idx = [x[0] for x in peaks_filtered]
- if plot:
- # scatter of the peaks
- fig, ax = plt.subplots()
- ax.imshow(arr2D)
- ax.scatter(time_idx, frequency_idx)
- ax.set_xlabel('Time')
- ax.set_ylabel('Frequency')
- ax.set_title("Spectrogram")
- plt.gca().invert_yaxis()
- plt.show()
- return zip(frequency_idx, time_idx)
- def generate_hashes(peaks, fan_value=DEFAULT_FAN_VALUE):
- """
- Hash list structure:
- sha1_hash[0:20] time_offset
- [(e05b341a9b77a51fd26, 32), ... ]
- """
- if PEAK_SORT:
- if PY3:
- peaks = sorted(peaks, key=itemgetter(1))
- else:
- peaks.sort(key=itemgetter(1))
- for i in range(len(peaks)):
- for j in range(1, fan_value):
- if (i + j) < len(peaks):
-
- freq1 = peaks[i][IDX_FREQ_I]
- freq2 = peaks[i + j][IDX_FREQ_I]
- t1 = peaks[i][IDX_TIME_J]
- t2 = peaks[i + j][IDX_TIME_J]
- t_delta = t2 - t1
- if t_delta >= MIN_HASH_TIME_DELTA and t_delta <= MAX_HASH_TIME_DELTA:
- if PY3:
- h = hashlib.sha1(
- ("%s|%s|%s" % (
- str(freq1),
- str(freq2),
- str(t_delta)
- )).encode()
- )
- else:
- h = hashlib.sha1(
- "%s|%s|%s" % (str(freq1), str(freq2), str(t_delta)))
- yield (h.hexdigest()[0:FINGERPRINT_REDUCTION], t1)
|